COE CST Third Annual Technical Meeting: Fracture Mechanics of Sapphire for High Temperature Pressure Transducers William Oates

Date of Presentation

Overview

- Team Members
- Motivation
- Background
 - Structure property relations
- Experimental Work
 - SEM Characterization
 - TEM Characterization
- Modeling
 - Coupling dislocation evolution with fracture mechanics
- Summary and future work
- Contact Information

Team Members

- Mark Sheplak (UF)
- Justin Collins (FSU), David Mills (UF), Daniel Blood (UF), Tony Smitz (UNC Charlotte)

Motivation

- Commercial sensors capable of up to approximately 600°C
 - Uses SOI technology
- Alternative material sapphire: potentially capable of up to 1500°C
- Laser machining to cut specimens
 - Hard
 - Chemically Inert

Kulite Pressure Transducer

Structure-Property Relations

- Sapphire crystallographic structure
 - Complicated by hexagonal cage & internal rhombohedral structure
- *Anisotropic elastic behavior
 - Rhombohedral—not hexagonal

$$\sigma_{ij} = c_{ijkl} \varepsilon_{kl}$$

Melting temperature 2030 °C

Basal half loop dislocation

[1210]

1100

2110

lioio

010

[TT 20]

-[ī010]

·[ī010]

-[īoɪ**o]** o]

Hockey, Journal of the American Ceramic Society, May 1971, Vol. 54, No. 5

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Toughness Induced Laser Machining

- Vicker's indentation characterization
- No visible cracks in laser machined specimens
- Laser machining parameters
 - 10 kHz rep rate, 10 mm/s scanning speed, 3.8 J/cm² fluence, 3um stepover

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

TEM Characterization

- High resolution TEM located at the NHMFL
 - 0.8 Angstrom resolution

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Coupling Dislocation Theory and Solid Mechanics

Linear Momentum Balance

PDE Governing Dislocation Mechanics

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

FEM Model of Single and Polycrystalline

Polycrystalline

Single crystalline

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Fracture Analysis

- Stroh's Formalism
- Equilibrium
- **Constitutive Relation**
- **Boundary Condition**
- Generalized Displacement Potential

J-Integral

Eshelby stress tensor

J₁ (direction of the crack)

When this condition occurs a crack propagates.

Comparison of Fracture Toughness

Experimental

Simulation

1/.	Force Comparison, J*				
	Θ=0	Θ=45			
	20.9 <i>N/m</i>	18.84 <i>N/</i> m			
	m ,				

Crack Tip Driving

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Summary

- Laser machining subsurface damage quantified
 - TEM characterization identified dislocations
- Dislocations modeling coupled with solid mechanics
 - Changes in slip system cause change in the crack tip driving force.
- Future work
 - Comparison of slip systems in Sapphire for 3D model.
 - Thermal annealing & laser parameter studies

Acknowledgements

- National High Magnetic Field Laboratory
 - Dr. Yan Xin
 - NHMFL-Applied Superconductivity Center
- FCAAP
- FAA
- FAMU-FSU College of Engineering
- University of Florida
 - Mark Sheplak, David Mills, Daniel Blood, Tony Smitz (UNC Charlotte)

Contact Information

- Justin Collins
 - Research Assistant
 - Email: justin.collins.eng@gmail.com
- William Oates
 - Associate Professor
 - Email: woates@eng.fsu.edu
 - Phone: (850) 645-0139
 - Fax: (850) 410-6337

Fracture Toughness

 $K_{1c} \cong 2.2 MPa * m \uparrow 1/2$ Ο ∘ $/\downarrow_C$ ≈ 11.64 N/m

K_{1c} ≅ 2.50 ≅ 15.25

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

TEM Characterization-2

ortation

Anisotropic Fracture Stroh's Formalism

- Equilibrium
 - *∇*•σ=0
- Constitutive Relation
 - $\sigma i j = C i j k s u k, s$
- Boundary Condition
 - ti=σjinj
- Generalized Displacement Potential
 - $ui=2\sum_{j=1}^{\infty} 1^3 = Re\{Aijf(zj)qj\}$

SEM Characterization

- Fracture characterization
 - Virgin vs. laser machining
- Crack opening quantified
 - Intrinsic crack tip toughness ______ measured

Fracture Toughness

o K_{1c} ≅ 2.3 MPa*m^{1/2} o G_c ≅ 11.65 N/m

1

Toughness Induced Laser Machining

- Preliminary Vicker's indentation characterization
- No visible cracks
- Laser machining parameters
 - 10 kHz rep rate. 10 mm/s scanning speed. 10% att. 3 um stepover

Federal Aviation al Technical Meeting (ATM3) Administration

Summary

- Correlated crystal structure with anisotropic elastic properties
- Quantified crack tip toughness in virgin sapphire specimens
 - Good correlation with data in literature
- Laser machining effects on fracture
 - Unusual toughness enhancement
- Hypothesis: Laser induced dislocations
 - TEM characterization and dislocation/fracture modeling currently underway

Acknowledgements

- NHMFL-ASC
- FAA
- FAMU-FSU College of Engineering
- University of Florida
 - Mark Sheplak, David Mills, Daniel Blood, Tony Smitz (UNC Charlotte)

Dislocation Mechanics

- Basal dislocations associated with a 100-g indentation on a (0001) basal plane section
- Specimen polished with abrasive paper.
- How does this influenced by laser machining?

Background

- Brittle
- Extremely hard material
 - Ranks a 9 on the Mohs scale
- Melting temperature of 2030°C
- Chemically inert

Introduction

- Crystallographic Structure
 - Hexagonal
 - Rhombohedral

C ₁₁	C ₃₃	C ₄₄	C ₁₂	<i>C</i> ₁₃	C ₁₄	Ref.
496.9 ± 1.4	500.5 ± 1.6	146.8 ± 0.2	162.3 ± 1.6	115.5 ± 1.6	-21.9 ± 0.2	present work
496	502	141	135	117	-23	[8]
496.8 ± 1.8	498.1 ± 1.4	147.4 ± 0.2	163.6 ± 1.8	110.9 ± 2.2	-23.5 ± 0.3	[9]
490.2	490.2	145.4	165.4	113.0	-23.2	[10]
497.4	499.4	147.4	164.0	112.3	-23.6	[11]
497.60 ± 0.18	501.85 ± 0.21	147.24 ± 0.13	162.6 ± 0.4	117.18 ± 0.19	-22.90 ± 0.11	[12]

Table 4. Determined elastic constants of corundum and their standard deviations in OPa. Previous data are also shown

Current Work

• Using Stroh's Formulism for 2D anisotropic elastic body.

Stress-strain law	$\sigma i j = C i j k s u k, s$
Equation of Equilibrium	<i>Cijksuk,sj</i> =0
Let	ui=aif(z)
Assume Solution	z = x1 + px2

(C1k1+p(Ci1k2+Ci2k1)+p2Ci2k2)ak=0

